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Abstract: The two-layer Shuttleworth–Wallace (SW) evapotranspiration (ET) model has been widely
used for predicting ET with good results. Since the SW model has a large number of specific
parameters, these parameters have been estimated using a simple non-hierarchical Bayesian (SB)
approach. To further improve the performance of the SW model, we aimed to assess parameter
estimation using a two-level hierarchical Bayesian (HB) approach that takes into account the variation
in observed conditions through the comparison with a traditional one-layer Penman–Monteith (PM)
model. The difference between the SB and HB approaches were evaluated using a field-based ET
dataset collected from five agricultural fields over three seasons in Myanmar. For a calibration period
with large variation in environmental factors, the models with parameters calibrated by the HB
approach showed better fitting to observed ET than that with parameters estimated using the SB
approach, indicating the potential importance of accounting for seasonal fluctuations and variation
in crop growth stages. The validation of parameter estimation showed that the ET estimation of
the SW model with calibrated parameters was superior to that of the PM model, and the SW model
provided acceptable estimations of ET, with little difference between the SB and HB approaches.

Keywords: Bayesian inference; model parameterization; Shuttleworth–Wallace model

1. Introduction

Evapotranspiration (ET) is the process of moving water from vegetation to the at-
mosphere by a combination of soil water evaporation (E) and crop transpiration (T). The
measurement and prediction of ET are essential for many applications in agriculture, such
as irrigation scheduling, crop yield forecasting, and general hydrologic studies [1] (Flu-
mignan et al., 2011). ET and its components can be directly measured using lysimeter,
sap flow, eddy covariance, and stable isotope techniques [2,3]. However, these methods
are expensive and labor intensive. Several models of ET have been developed since the
1950s. Over the last decade, the two-layer Shuttleworth–Wallace (SW) evapotranspiration
model, which is physically sound and rigorous, has been widely used, and has shown
performance superior to that of one-layer models such as the Penman–Monteith model
(PM) [4] for different types of sparse crops, and different climatic conditions [5–10]. The
SW model calculates ET as the sum of the PM equation for E and T, weighted by a set of
coefficients that represent the combination of soil and canopy resistance [11]. However,
the practical application of this approach is somewhat limited, since it is a highly complex
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model with a large number of specific parameters [9], which are both difficult and expen-
sive to continuously measure under field conditions [12]. The most widely used approach
to the estimation of parameter for the model is fitting to observed values by trial and error,
using an approach such as a least-square method. However, this approach does not take
into account the uncertainty in the model estimation process [13,14]. When the least-square
criterion is used, outliers can strongly influence the final values of the parameters, and can,
therefore, introduce significant bias into the estimated model parameters [15].

Bayesian approaches have recently been used to simultaneously estimate the model
parameters against the ET observed in the field [16]. These approaches have been used in
grassland [17], for maize [18], for jujube [19], and for maize, vegetables, and fruit trees [20].
The Bayesian approach combines the probability distributions of model parameters based
on the prior probabilities for magnitude and uncertainty, using observed data to generate
the posterior distributions of the parameters. This approach allows the quantification of
model inputs, parameters, and output uncertainties, and also takes into account prior
knowledge for all parameters, making allowances for unknown influences [21].

However, these studies used a non-hierarchical Bayesian (HB) approach for parameter
estimation. This approach cannot take into account sources of uncertainty such as variations
in observed conditions or measurement errors in the model parameter estimation process.
Using the non-hierarchical approach, the results are based on a specific set of parameter
estimates, which are obtained in a specific observation group, under specific conditions, at
a specific time. These results, therefore, cannot necessarily be generalized across different
conditions and groups [22]. It is critical to consider the effects on the parameters of changes
in season and observed conditions when simulating ET over long periods [19]. To improve
parameter estimation, therefore, a Bayesian model with a hierarchical structure should be
used, to take into account the variations in crop growth and seasonal fluctuations within a
dataset. In a hierarchical model, individual parameter estimates are assumed to come from
a group level distribution, such as crop growth stages and observation periods, and can
account for both differences and similarities between groups [23].

The objectives of this study, therefore, were: (1) to estimate the parameters of the SW
and the PM models using simple non-hierarchical Bayesian (SB) and two-level HB ap-
proaches against ET data collected in the field for different crops and seasons in Myanmar;
(2) to compare the posterior distributions of the model parameters obtained using the SB
and HB approaches; (3) to analyze the effects of variation in observation conditions on the
posterior mean values of parameters calibrated using the HB approach in the SW and PM
models; and (4) to assess the performance of models parameterized using either the SB or
the HB approach on the estimation of daily ET. We calculated ET using the Bowen Ratio
Energy Balance (BREB) method [24] at five agricultural fields over three seasons from 2017
to 2019 in Myanmar, where few studies on ET have been conducted. Thus, little data exists
concerning crop water requirements and the water balance of agricultural fields. One of
the most important problems, with respect to agriculture in Myanmar, is the shortage of
irrigation which leads to low productivity [25]. We expect that this study will not only
improve the method of model parameter calibration, but also contribute to the practical
application of ET models, increasing the efficiency of water use.

2. Materials and Methods
2.1. Study Sites and Observation

The study sites were experimental fields of the Department of Agricultural Research
in the Zayarthiri Township of Naypyidaw (latitude 19◦49.5′ N, longitude 96◦16.44′ E, 100 m
above sea level) (Figure 1a). This area has a moderate monsoon climate, with an average
annual rainfall of 1100 mm, of which about 75% falls during the monsoon season—between
June and September. The observation of ET using the BREB method was conducted using a
tripod micrometeorological station installed at five agricultural experimental fields growing
four crops—rice, sunflower, sesame, and groundnut—over three seasons—dry, monsoon,
and post-monsoon—from 2017 to 2019 (Figure 1b). The abbreviations of each observation
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representing seasons and crops (i.e., sesame in the dry (SsD), paddy rice in the dry (PrD),
paddy rice in the monsoon (PrM), groundnut in the post-monsoon (GnPm), and sunflower
in the post-monsoon (SfPm) seasons) are defined in Table 1. The soil at a depth of 0–70 cm
in the study fields was primarily sandy loam and clay loam with poor organic matter
content, and partially contained a layer of loam and loamy sand. Due to the limited dataset
in Myanmar, only PrD2 was used to validate the model parameters. The other observations
were used for the calibration. The calibration period for the parameters of the ET model
was 87 days for all observations. In the HB approach, the parameters were calibrated using
a dataset of 87 days which was divided equally into three calibration periods of 29 days,
each considering three growth stages of crops (i.e., vegetative, reproductive, and ripening
stages). The irrigated fields included both paddy rice and SsD fields; the soil condition of
the paddy field was almost saturated duration the observation; thus, the amount of water
provided by basin irrigation was only observed for SsD.
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Figure 1. (a) Study site location and (b) experimental fields where evapotranspiration was observed.

Table 1. Conditions of observation of crops, seasons, cultivation schedules, and soil, and the calibration/validation periods
for model parameters using Bayesian approaches.

Abbrev. Crops Seasons Sown Day/Harvested
Day Soil Texture Periods (87 Days)

Calibration
SsD Sesame Dry 5 February/15 May Clay loam 5 February–2 May 2018

PrD1 Paddy rice Dry 27 January/11 June Sandy loam 24 February–21 May 2019
PrM Paddy rice Monsoon 31 June/30 November Sandy loam 1 August–26 October 2017

GnPm Groundnut Post-monsoon 12 September/12 January Sandy loam 14 September–9 December
2018

SfPm Sunflower Post-monsoon 31 October/30 January Sandy loam 8 November 2017–2
February 2018

Validation
PrD2 Paddy rice Dry 1 February/30 May Sandy loam 4 February–1 May 2017

The BREB ET observation system was composed of thermo-hygrometers (air tem-
perature and capacitive relative humidity sensor instruments) (HMP110; Vantaa, Vaisala,
Finland) with multi-plate radiation shields (FP1806; Field Pro, Tokyo, Japan) located at
1.0 m and 2.5 m above ground level; solar radiometers (PCM−01NB−L3CS; PREDE Co.,
Tokyo, Japan) for shortwave radiation and infrared radiometers (PRI−01B−L3CS; PREDE
Co,.) for long-wave radiation; a heat flux sensor (PHF02−L5CS; PREDE Co.); and an
anemometer (03101Y−L3CS; RM Young, Traverse City, MI, USA). These data were auto-
matically logged every 10 min using a data logger (CR1000; Campbell Scientific Inc., Logan,
UT, USA). The soil moisture content was observed using capacitance sensors (GS-1; METER
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Group Inc., Pullman, WA, USA) installed in each field, which recorded into a data logger
at 30 min intervals (Em50; METER Group Inc.). The daily mean datasets were used for the
ET calculation of the BREB and the simulation of the SW model. We did not measure the
leaf area index (LAI) and no research into LAI has been conducted in Myanmar. The LAI
plays important roles in determining the coefficients of soil surface and canopy resistances
in ET models for weighting ET partitioning into E and T. However, since in this study we
did not aim to rigorously evaluate ET by the models, we estimated the values of LAI from
plant height using formulas from the literature, as described below.

2.2. Evapotranspiration Model
2.2.1. Two-Layer Model Based on the SW Model

The SW model is composed of the sum of two terms, E and T, as follows:

λET = λE + λT = CsETs + CcETc (1)

where the latent heat flux (λET) is the sum of the latent heat of water evaporation of the
soil surface (λE) and crops (λT), respectively (W m−2). Cs and Cc represent the soil surface
and canopy resistance coefficients, respectively. λ is the latent heat of water vaporization
(MJ kg−1). ETs and ETc represent the soil evaporation and the canopy transpiration (W
m−2), respectively, and are calculated as:

ETs =
∆A +

[
ρCpD− ∆rs

a(A− As)
]
/(ra

a + rs
a)

∆ + γ[1 + rs
s/(ra

a + rs
a)]

(2)

ETc =
∆A +

[
ρCpD− ∆rc

a As
]
/(ra

a + rc
a)

∆ + γ[1 + rc
s/(ra

a + rs
a)]

(3)

where ∆ is slope of the saturation vapor pressure curve at the mean air temperature (kPa
◦C−1), ρ is the mean air density (kg m−3), Cp is the specific heat capacity of dry air at
constant pressure (approximately 1.01 kJ kg−1 ◦C−1), γ is the psychrometric constant
(approximately 0.066 kPa ◦C−1), D is the air water vapor pressure deficit at the reference
height (kPa), ra and rs are the aerodynamic resistance and stomatal resistance (s m−1),
respectively, and A and As represent the available energy input above the canopy and
above the soil surface (W m−2), respectively. These are expressed as:

A = Rn − G (4)

As = Rns − G (5)

where Rn and Rns are the net radiation fluxes (W m−2) into the canopy and the soil surface
and G is the soil heat flux (W m−2). Rns can be calculated using Beer’s law:

Rns = Rn exp(−KaLAI) (6)

where Ka is the extinction coefficient of light attenuation depending on the crop develop-
ment stage. For example, the Ka of rice increases from 0.35 to 0.62 from the vegetative
period to the post-heading stage [26]. In this study, Ka was set to 0.4 for all crop and growth
stages. The LAI is defined as the effective value of the leaf area index that accounts for
illumination-induced stomatal closure deeper in the canopy (m2 m−2). The value of esti-
mated LAI (LAIest) was estimated from the measured plant height (hc) using the following
formula for typical values of field crops [27,28]:

LAIest = LAImax + 1.5 ln (hc) (7)
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The maximum LAI (LAImax) for normal conditions of plant density were obtained from
the literature, and were 4.0 for rice [29,30], 5.0 for groundnut [31,32], 3.0 for sunflower [33],
and 2.2 for sesame [34]. The coefficients Cs and Cc are given by the expressions:

Cs =
1

1 + [RsRa/Rc(Rs + Ra)]
(8)

Cc =
1

1 + [RcRa/Rs(Rc + Ra)]
(9)

in which Ra, Rs, and Rc are calculated as:

Ra = (∆ + γ)ra
a (10)

Rs = (∆ + γ)rs
a + γrs

s (11)

Rc = (∆ + γ)rc
a + γrc

s (12)

The three aerodynamic resistance values (rc
a, ra

a, and rs
a) (s m−1) were calculated

using the methodology of [35], as detailed in Appendix A. The bulk stomatal resistance
of the canopy (rc

s) (s m−1), which is the equivalent resistance of all the individual stoma
in a canopy and depends on other environmental variables, can be calculated using the
Jarvis-type model [36,37] and following the protocol of [17] as;

rc
s =

rSTmin

LAI{F1(Rs)F2(Ta)F3(D)F4(wc)} (13)

where rSTmin indicates the minimal stomatal resistance (s m−1) and is estimated using
a Bayesian approach. Following previous studies [17,38], the stress functions F1 to F4,
representing the effect of the variables related to soil surface and aerodynamic resistance
Rs, air temperature Ta (◦C), D (kPa), and volumetric moisture content wc (m3 m−3), are
defined as follows:

F1(Rs) =
Rs

1000
1000 + k1

Rs + k1
(14)

F2(Ta) =
(Ta − Ta,low)

(
Ta,high − Ta

)(Ta,high−k2)/(k2−Ta,low)

(k2 − Ta,low)
(

Ta,high − k2

)(Ta,high−k2)/(k2−Ta,low)
(15)

F3(D) = 1− k3D (16)

F4(wc) =


1 wcroot > wccr

(wcroot−wcwp)
(wccr−wcwp)

wcwp ≤ wcroot ≤ wccr

0 wcroot < wcwp

(17)

where k1 (W m−2), k2 (◦C), and k3 (kPa−1) are constants optimized using a Bayesian
approach. Ta,low and Ta,high are the low and high temperature limits and were assumed to
be 0 and 40 ◦C, respectively [39]; wcroot is the moisture content in the root zone, estimated
from observed data at a depth of 0–50 cm (m3 m−3); wcwp is the moisture content at the
wilting point (m3 m−3) measured in the laboratory, and wccr is the critical moisture content
at which plant stress starts, set to 60% of saturated moisture content [16]. When the value of
the stress function is zero, the canopy resistance is not calculated. The soil surface resistance
(rs

s) (s m−1) is expressed as:

rs
s = exp

(
b1 − b2

wcsur

wcSAT

)
(18)

where b1 and b2 are empirical constants (s m−1) representing the estimation parameters
using the Bayesian approaches, wcsur is the observed volumetric soil moisture content 5 cm
below the soil surface, and wcSAT is the saturated moisture content.
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2.2.2. Traditional One-Layer PM Model

The PM model can be formulated as [4]:

λET =
∆(Rn − G) + ρCpD/ra

∆ + γ(1 + rc
s/ra)

(19)

where the canopy resistance rc
s was computed following Equation (13). ra is the aerody-

namic resistance (s m−1) and is usually calculated using the following equation, assuming
neutral stability conditions [40]:

ra =
1

k2u2
ln
(

z− d
hc − d

)
ln
(

z− d
z0

)
(20)

where k is von Karman’s constant (0.41), u is the wind speed at 2 m height (m s−1); z is the
reference height above the crop at which meteorological measurements are available (2 m);
d is zero plane displacement (m), estimated as d = 0.63·hc; and z0 is the roughness length
for momentum transfer (m), estimated as z0 = 0.13·hc.

2.3. Simple and HB Approaches

The probabilistic models for the estimation of parameters of the ET model are de-
scribed as follows:

For the SB approach,

OET [t] ∼ Normal(SET(θs)[t], σ) (21)

and for the HB approach,

OET [c][t] ∼ Normal
(

SET

(
θs [c]

)
[t], σ

)
(22)

θs [c] ∼ Normal(θs, mean, σθs) (23)

where the SB approach does not include the constant c, representing different groups; in
this study, the three calibration periods. OET [c][t] indicates the ET data observed at day t
(1, 2, . . . , 87 in this study) at each observation period, divided evenly into three calibration
periods c (1, 2, 3), SET [c][t] are the ET data estimated by the SW and PM models at day
t for each period c, and σ is the standard deviation, representing the measurement error
variance of ET estimates (mm day−1). Normal indicates a normal distribution from which
the ET estimates are generated. θs [c] represents a prior uncertainty in the parameters of the
calibration period and can be described as being stochastically generated from a normal
distribution of θs, mean and σθs . θs, mean is the overall mean distribution of each parameter in
a dataset, while σθs is a random variable distribution that represents the difference in the
calibration period of the parameter. We assumed that the specific unknown parameters θs
are distributed uniformly within a specified prior distribution range, as shown in Table 2.

In this study, all the simulations and calculations were performed in R version 4.0.2.
For estimating the posterior distribution for the SB and HB approaches, we used RStan
version 2.19.3 developed by [41], which employs a Markov Chain Monte Carlo (MCMC)
technique to sample from the posterior distribution of a given model. We ran four MCMC
chains with 50,000 iterations and monitored them to confirm that the MCMC chains
converged to the target distributions. When the Rhat of RStan was less than 1.05, we
judged the chains to have converged.
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Table 2. Prior distributions used for estimating the posterior distributions of the model parameters
associated with canopy and soil surface resistance.

Parameter Prior Range References

rST min [0, 60] [38]
k1 [0, 500] [39]
k2 [5, 30] [38]
k3 [0, 0.1] [39]
b1 [4, 15] [42]
b2 [0, 8] [42]

2.4. Evaluation of the Performance of the SW Model Using Bayesian Approaches

The ET values were calculated from the posterior mean values of the model parameters
were evaluated using four statistical criteria: the mean absolute error (MAE), the root
mean square error (RMSE), the mean absolute percentage error (MAPE), and the root
mean square percentage error (RMSPE). The MAE can potentially be used to identify bias.
RMSE provides an overall measure of the degree to which the data differ from the model
estimation. MAE and RMSE values of zero indicate a perfect fit. MAPE and RMSPE,
which can express the estimation accuracy as a ratio, were included because the model
was estimated under different observation conditions: the dry and the monsoon. These
statistical criteria are described as follows:

MAE =
1
n

N

∑
i=1
|Ei −Oi| (24)

RMSE =

√√√√ 1
n

N

∑
i=1

(Ei −Oi)
2 (25)

MAPE =
1
n

N

∑
i=1

∣∣∣∣Ei −Oi
Oi

∣∣∣∣ (26)

RMSPE =

√√√√ 1
n

N

∑
i=1

(
Ei −Oi

Oi

)2
(27)

where Ei and Oi represent the estimated and observed values, respectively. N (or n) is the
number of data points in the dataset.

3. Results and Discussion
3.1. Differences in Observation Conditions in a Dataset

In the HB approach, the model parameters were estimated taking into account the
uncertainty in group levels within a dataset. The growth period of crops is generally sepa-
rated into three stages: the vegetative, reproductive, and ripening stages. Therefore, daily
observed data for the 87 days were divided into three periods to calibrate the parameters
using the HB approach, as described in Figure 2.

The difference between Rn and Ta in the first and third periods of the dry season and
the post-monsoon was greater than that for the monsoon season. The Ta of PrM was almost
constant and SsD, PrD1, and PrD2 gradually increased, but GnPm and SfPm gradually
decreased over the three periods. The difference between the minimum and maximum
Ta in a dataset was 3.6 ◦C in the monsoon, 6.1 ◦C and 8.1 ◦C in the dry, and 7.2 ◦C and
8.0 ◦C in the post-monsoon seasons, respectively. Changes in wc, except in the paddy field,
indicated that SsD, GnPm, and SfPm had decreased residual wc, and PrM, PrD1, and PrD2
with ponded water maintained high. As calculated using Equation (7), the estimated LAI
values increased rapidly in the first and second periods and gradually reached a constant
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value in the third calibration period. The value of PrD1 and PrD2 increased constantly over
the entire period.
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Figure 2. Variations in daily net radiation (Rn), air temperature (Ta), air water vapor pressure deficit
(D), wind speed (U), soil moisture content (wc), and plant height (hc) with estimated leaf area index
(LAI) in different observation periods at three fields in the dry season, a different field in the monsoon
season, and a third set of two fields in the post-monsoon season. The three calibration periods for HB
are indicated by vertical lines.

3.2. Model Parameter Estimation Using the SB and HB Approaches
3.2.1. Comparison of Posterior Distributions of Model Parameters

A violin plot, depicting the posterior distribution of the SW and PM models pa-
rameters using the SB and HB approaches, is presented in Figure 3. The values of the
posterior parameter distribution for the two models corresponding to the means and the
95% confidence intervals are given in Appendix B (Table A1).
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These results showed that parameterizations using SB and HB were, in most cases,
successful in reducing the uncertainties in the parameters. Several posterior distributions,
such as the k2 of SsD and the b1 of SfPm for the SW model were strongly constrained,
indicating their importance as a parameter for controlling ET estimation and partition
(Figure 3a), as discussed below. In the estimation of the k2 of SsD, we assumed that the
strong correlation between Ta and the observed ET with the small LAI was a factor that
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constrained the posterior distributions, in order to reduce the value of T. SsD had the
highest correlation with Ta and the observed ET of all crops. The correlation coefficients
between daily Ta and the observed ET in descending order were SsD 0.66 > PrD1 0.57 >
PrM 0.47 > GnPm 0.36 > SfPm 0.21. This strongly constrained k2 of SsD at the low side of
the prior bound indicated that the stomatal resistance of the canopy largely limited the
value of T. In the estimation of the b1 of SfPm in the SW model, the soil moisture of SfPm
near the soil surface was the lowest of all observations (Figure 2). The posterior distribution
range of b1 associated with the soil surface resistance was, therefore, constrained to the low
side of the prior range to reduce the value of E. The parameter k3, which is related to D, was
poorly constrained and displayed large variability in all observations (Figure 3). Although
the D value differed considerably between the dry and monsoon seasons (Figure 2), there
were no differences in the posterior distribution of k3 between the two seasons for the SW
model. As previous studies [17,18] showed, k3 is an insensitive parameter of the models.
Some parameters showed large differences between the SB and the HB on the posterior
distribution. For example, the b2 of SsD for the SB in the SW model was constrained at
the low side on the prior bound, but that for the HB was restricted at the upper side, with
no differences in group levels (Figure 3a). This observation indicated that the parameter
b2, calibrated by the SB and the HB, had different abilities under the same environmental
factors, and thus might have made a difference in the estimated and partitioned ET between
the SB and HB approaches (Figure 3a).

The range of posterior distributions for several parameters differed substantially
between the SW and PM models. For example, the rSTmin of PrM of the SW model was
well constrained compared to that of the PM model. For the PM model, the b2 of SsD had
lower uncertainty than that for the SW model. The differences in model structure between
the SW and PM models affected the reduction in uncertainty in the parameter estimation.
However, for most of the parameters and conditions, there were no large differences in the
range of posterior distributions between the models.

3.2.2. Effect of Difference in Observation Conditions on Parameter Estimation

The differences between the posterior distributions of the model parameters, estimated
using the HB approach based on observed ET data over the three calibration periods, were
clear in several cases (Figure 3), including the rSTmin of PrM and GnPm, the k1 of GnPm,
the k2 of SfPm, and the b1 of SsD in the SW model, and the k2 of SsD and SfPm, the b1 of
GnPm, and the b2 of SfPm in the PM model. However, in the k3 of all conditions and all
parameters for PrD1, these differences were unclear.

The degrees of variation in the posterior mean value of the three calibration periods
in a dataset—the coefficient of variation (CV) for each parameter and observation—are
shown in Figure 4. The CV was calculated from the posterior mean value of σθs divided
by θs,mean in Equation (23). The CV values of rSTmin, which are associated with stomatal
resistance, varied greatly depending on the observations; the difference between the SW
and PM models was also larger than those of other parameters. Since the two-layer SW
model is sensitive to error in the values of canopy and soil resistance [10,43], measurement
errors or improperly used constants and variables, such as Ka and LAI, may have increased
the variation in the estimation of this parameter. In paddy fields, which have continuously
saturated surfaces in which the fluctuations in the surface resistance are small, the variations
in rSTmin may be strongly affected by the growth of the plant.

In contrast, the variability of k3 was nearly constant, regardless of differences in the
models and observations. The posterior distributions of k3 were poorly constrained and
widespread along prior ranges (Figure 3). As has been shown in previous studies [17,18,20],
this observation suggests that k3 is not very susceptible to seasonal fluctuations with large
uncertainties. Therefore, k3 may not be necessary for strict parameter estimation, and
empirical values may suffice.
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Figure 4. Coefficient of variation of posterior mean values of the parameters estimated in the
Shuttleworth–Wallace (SW) and Penman–Monteith (PM) models using the hierarchical Bayesian (HB)
approach, calculated from σθs divided by θs,mean in Equation (23), indicating the degree of variation
in the posterior mean value of the three calibration periods.

3.3. Comparison of ET Estimation by SW and PM Models Using SB and HB Approaches

Figures 5a and 6a show the daily changes in observed and estimated ET using the
SW and the PM models with parameters calibrated using the SB and HB approaches with
irrigation + rainfall amount for SsD, while rainfall amount only was used for the others.
Figures 5b and 6b show the values corresponding to the difference in the SB and HB
approaches on the estimated ET, calculated as the estimated ET of the SB approach divided
by that of the HB approach. The ET observed and estimated by the two models with
parameters calibrated by the SB and HB approaches with portioned E and T only for the
SW model; the results of statistical evaluation for the model performances are shown in
Table 3, and the regression analysis between the observed ET and that estimated by the
models are presented in Figure 7.

For the SW model, generally, the posterior mean value of the parameters calibrated
using the SB and HB approaches provided acceptable estimations of ET over 87 days
(Figure 5a), and the differences in the estimated total values of ET between the SB and
HB approaches were small: 0 to 1 mm for PrD1 and SfPm, and 3 to 10 mm for SsD, PrM,
and GnPm (Table 3). However, for the PM model, there was a large difference between
the estimated and observed ET, except for PrD1 and PrM (Figure 6a and Table 3). The
confidence intervals of the posterior distributions on the estimated ET for the PM model
were generally wider than those for the SW model, indicating that large uncertainty in
the parameter values led to poor model performance. For the PrD1 of both models, the
estimated total value of ET produced by the SB and HB approaches were very similar
(Table 3). The values of ETsw.SB/ETsw.HB and ETpm.SB/ETpm.HB were close to 1.0 over the
entire period (Figures 5b and 6b), indicating a lack of variation in the posterior mean
distributions at three calibration periods using the HB approach (Figure 3). The wc and
LAI values changed constantly or linearly over all calibration periods (Figure 2). Therefore,
even when the variables that affected the estimation of the parameters varied considerably
over the calibration period, the variables would not have affected the parameter estimation
for each period if the change ratio was a constant. For PrM with a small fluctuation in
environmental factors, a slight difference in ET estimates between SB and HB was apparent
in the third calibration period (Figures 5b and 6b), possibly because the estimated LAI
value varied in a different change rate at the third period (Figure 2). The averaged change
rate of LAI for the three stages in PrM were 3.2%, 1.0%, and 0.1%. For SsD and SfPm,
large fluctuations in environmental factors produced differences between the ET estimates
obtained using the SB and HB approaches for almost the entire period, especially in the
PM model (Figures 5 and 6). This observation suggests that the SW model could adapt
well to changes in seasons and surface conditions with respect to parameter estimation,
but the PM model was subject to environmental fluctuation in the calibration period.
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Figure 5. (a) Observed and estimated evapotranspiration (ET) using the Shuttleworth–Wallace (SW) model with parameters
calibrated using simple Bayesian (SB) and hierarchical Bayesian (HB) approaches. Lines and bands corresponding to the
posterior means and confidence intervals at the 95% probability, respectively, in all five observation conditions. Vertical
bars indicate the rainfall + irrigation amount for the SsD and rainfall only for the others. (b) Variations in the values of
ETsw.SB and ETsw.HB calculated from ET estimates by the SW model using SB and HB. The three calibration periods for HB
are separated by vertical lines.

The ET estimates obtained using the HB approach in both models were better than
those produced using the SB approach in both models, indicating that the performance of
the SW model was superior to that of the PM model (Table 3). The slope of the estimates
obtained using the HB approach in the regression was closer to 1 than that produced by the
SB for most observation conditions in both models (Figure 7). Considering the magnitude
of errors for the BREB method, which are reported to be in order from several to 10 percent
(e.g., [44]), it is not appropriate to evaluate the accuracy of estimated ET with parameters
calibrated using the SB and HB approaches. However, the HB approach improved the fit
of the model to the observed data, indicating the potential importance of accounting for
seasonal fluctuations and variations in crop growth stages in calibrating models which can
reliably predict ET.
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Figure 6. (a) Observed and estimated evapotranspiration (ET) using the Penman–Monteith (PM) model with parameters
calibrated using the simple Bayesian (SB) and hierarchical Bayesian (HB) approaches. Lines and bands correspond to the
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and ETpm.HB calculated from ET estimates by the PM model using SB and HB. The three calibration periods for HB are
separated by vertical lines.

For ET partitioning in PrM for the SB and HB approaches in the SW model (Table 3),
the Eest and Eest/ETest values were very small, at 43 mm and 0.08, respectively, indicating
the improper use of estimated LAI values, or the uncertainty in ET partitioning by the
SW model calibrated using only observed ET data. However, due to the lack of direct
measurements of the different components of ET, it is not possible to validate the partitioned
ET values using the SB and HB approaches in the SW model, although the estimated total
ET was acceptable. Thus, multiple observations obtained using lysimeters and measures of
sap flow should be used to validate ET partitioning into E and T by the SW model using
the Bayesian approach in future studies.
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Figure 7. Regression analysis of observed and estimated evapotranspiration (ET) produced by (a) the
Shuttleworth–Wallace (SW) and (b) the Penman–Monteith (PM) models with parameters calibrated
using simple Bayesian (SB) and hierarchical Bayesian (HB) approaches at five observation conditions.
R2, coefficient of determination.
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Table 3. Observed and estimated evapotranspiration (ET) with partitioned evaporation (E) and transpiration (T) using the
Shuttleworth–Wallace (SW) and the Penman–Monteith (PM) models with parameters calibrated using simple Bayesian (SB)
and hierarchical Bayesian (HB) approaches, and statistical criteria under five observation conditions.

Model Bayes
Type Condition ETob

(mm)
ETest
(mm)

Eest
(mm)

Test
(mm)

MAE
(mm d−1)

RMSE
(mm d−1)

MAPE
(%)

RMSPE
(%)

SW

SB

SsD 248 253 182 71 0.275 0.388 0.099 0.120

PrD1 798 783 110 673 0.562 0.684 0.065 0.087

PrM 529 516 43 473 0.663 0.825 0.112 0.142

GnPm 350 339 89 250 0.371 0.499 0.110 0.141

SfPm 180 179 124 55 0.239 0.309 0.117 0.170

HB

SsD 248 248 213 35 0.218 0.294 0.074 0.089

PrD1 798 784 94 690 0.557 0.679 0.065 0.086

PrM 529 506 43 463 0.642 0.786 0.106 0.140

GnPm 350 342 78 264 0.341 0.464 0.103 0.133

SfPm 180 179 129 49 0.205 0.272 0.102 0.153

PM

SB

SsD 248 217 – – 0.921 1.17 0.333 1.37

PrD1 798 796 – – 0.529 0.657 0.062 0.077

PrM 529 528 – – 0.731 0.927 0.125 0.151

GnPm 350 352 – – 0.608 0.878 0.180 0.291

SfPm 180 163 – – 0.661 0.838 0.317 1.01

HB

SsD 248 236 – – 0.587 0.824 0.197 0.435

PrD1 798 797 – – 0.497 0.615 0.058 0.073

PrM 529 527 – – 0.597 0.737 0.102 0.126

GnPm 350 355 – – 0.484 0.675 0.147 0.177

SfPm 180 163 – – 0.535 0.669 0.266 0.627

Notes: ETob and ETest indicate observed ET and estimated ET using the SW and PM models, respectively. Eest and Test are the estimated E
and T, respectively, using the SW model. MAE, mean absolute error; RMSE, root mean square error; MAPE, mean absolute percentage
error; RMSPE, root mean square percentage error.

3.4. Validation of Model ET Estimation

Applying the posterior mean values of the parameters generated by the SB and the
HB approaches using the dataset of PrD1 (Table A1), the model performance of the SW and
the PM models were validated using the dataset of PrD2, as shown in Figure 8.

The ET estimates of the SW model were approximately equal to the observed ET,
except during the initial stage, and there were few differences in the estimated ET using
parameters calibrated by the SB and the HB approaches. The PM model overestimated ET
in the last half period; the estimated ET using parameters obtained using the HB approach
was slightly larger than those obtained using the SB approach.

Numerous studies have shown that the two-layer SW model has higher performance
for ET estimation than other ET models, a finding consistent with those of our study.
These studies have confirmed that the differences in the model structure by which ET is
partitioned into E and T is related to the model performance (e.g., [16,17,45–48]). The ET
estimation of the SW model with parameters calibrated using the Bayesian approaches was
acceptable for the paddy field condition, suggesting the usefulness of the two-layer SW
model. The low level of difference between the SB and HB approaches in the ET estimation
of the SW model may be related to the small environmental fluctuations in the calibration
period (PrD1).

The overestimation of ET by the PM model in this study agrees with the results of
several previous studies (e.g., [9,48]), but some studies have found that the difference
between the SW and PM models is not significant [8,49]. Generally, the performance of ET
model is strongly related to the surface resistance, which is calculated as the integration of
the canopy and soil surface resistances and reflects the effects of soil moisture and variation
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in LAI [50]. Some studies (e.g., [46]) reported that when the surface resistance in the PM
model is lower than the observed resistance, the PM model overestimates ET. Thus, this
overestimation in this study indicates an inadequate parameter estimation of the surface
resistance, affected by the model structure of the PM model. The estimated mean value of rc

s
in the PM model using the parameters from the HB approach was slightly lower (54 m s−1)
than that from the SB approach (69 m s−1) during the last half period. The posterior means
of rSTmin for PrD1 generated by the SB and HB approaches were 52 m s−1 and 47 m s−1,
respectively, and those of other parameters also differed slightly between the SB and HB
approaches (Table A1). Since the validation was performed using only the dataset of the
paddy field conditions, the validity of the HB approach must be further verified using
calibration data including large seasonal fluctuations and variations in crop growth.
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Figure 8. (a) Comparison of observed evapotranspiration (ET) for the paddy rice field in the dry season of 2017 (PrD2)
and estimated ET produced by the Shuttleworth–Wallace (SW) and the Penman–Monteith (PM) models with calibrated
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dry season of 2019 (PrD1). Lines and bands indicate the mean values and 95% confidence intervals of the estimated ET.
(b) Regression analysis of estimated ET calculated by the SW and the PM models using calibrated parameters of PrD1
with observed ET of PrD1. RMSE, root mean square error; MAPE, mean absolute percentage error; R2, coefficient of
determination.

4. Conclusions

In this study, we assessed the estimation of ET and the parameters of the SW and PM
models calibrated using SB and HB approaches, based on a field-based ET dataset collected
from five agricultural fields over three seasons in Myanmar. The main conclusions were as
follows:

1. Parameterization using the SB and HB approaches was, in most cases, successful in
reducing the uncertainties in the parameters. Using the HB approach to parameter
estimation, we identified the parameters which are sensitive to seasonal fluctuations
and differences in crop growth stages. The parameter k3, which is related to the
water vapor pressure deficit, was not very susceptible to seasonal fluctuations, while
rSTmin, which is related to stomatal resistance, was sensitive to variations in observation
conditions.
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2. In the calibration of model parameters, the statistical criteria for all conditions ob-
served indicated that the models with parameters calibrated using the HB approach
had a better fit to the observed ET data than those with parameters calculated using
the SB approach, indicating the potential importance of seasonal fluctuations and
variability in crop growth stages for the calibration of model parameters. The per-
formance of the SW models was superior to that of the PM model for most of the
observation conditions, using both the SB and HB approaches.

3. The SW model, with parameters calculated using the SB and HB approaches with
only observed ET data, could provide an acceptable estimation of the ET. The PM
model with parameters calculated using both SB and HB approaches overestimated
the ET in the last half period; the ET estimates for the HB approach were slightly
overestimated compared with the SB approach.
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Appendix A. Aerodynamic Resistances

The bulk boundary layer resistance of the vegetative elements in the canopy (s m−1)
(rc

a) can be estimated by the following equation [35,51]:

rc
a =

rb
LAI

(A1)

where rb is mean boundary layer resistance. Typical values measured in the field are
25 s m−1 [52,53].

The two aerodynamic resistance values for between the canopy height and reference
level (s m−1) (ra

a) and for between the soil surface and canopy height (s m−1) (rs
a) can be

calculated as in [35]:

ra
a =

LAI
4

ra
a(α) +

4− LAI
4

ra
a(0) (0 ≤ LAI ≤ 4) (A2)

rs
a =

LAI
4

rs
a(α) +

4− LAI
4

rs
a(0) (0 ≤ LAI ≤ 4) (A3)

ra
a = ra

a(α) (LAI > 4) (A4)

rs
a = rs

a(α) (LAI > 4) (A5)

ra
a(0) =

ln2(z/z′0)
k2u∗

− rs
a(0) (A6)
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rs
a(0) =

ln(z/z′0) ln
{
(d + z0)/z′0

}
k2u∗

(A7)

ra
a(α) =

ln{(z−d)/z0}
k2u∗

[ln{(z− d)/(hc − d)}+ hc
n(hc−d)

×[exp[n{1− (d + z0)/hc}]− 1]]
(A8)

rs
a(α) =

ln{(z− d)/z0}
k2u∗

hc

n(hc − d)
[exp n− exp[n{1− (d + z0)/hc}]] (A9)

where ra
a(α) and rs

a(α) are values of ra
a and rs

a for a crop with complete canopy cover
(LAI = 4) (s m−1), respectively; ra

a(0) and rs
a(0) are values of ra

a and rs
a for bare soil (s m−1),

respectively; z is the reference height above the crop where meteorological measurements
are available (2 m); hc is plant height (m); d is zero plane displacement, usually estimated
as d = 0.63·hc; z0 is roughness length of the crop, which can be calculated as z0 = 0.13·hc;
z′0 is effective roughness length of bare soil (0.01 m); n is extinction coefficient of the eddy
diffusion (2.5 [54]); and u∗ is the friction velocity (m s−1), which is given by u∗ = ku/ln{(z
− d)/z0} where k is von Karman’s constant (0.41) and u is wind speed (m s−1).

Appendix B. Posterior Probability Distributions of the Parameters

The values of the posterior parameter distribution using the SB and HB approaches
for the SW and PM models corresponding to the means and the 95% confidence intervals
are given in Appendix B (Table A1).

Table A1. Posterior probability distributions of the parameters in the Shuttleworth–Wallace (SW) and the Penman–Monteith
(PM) models using simple Bayesian (SB) and hierarchical Bayesian (HB) approaches for five observations, characterized by
the posterior means and 95% Bayesian confidence intervals.

Parameter Model Bayes SsD PrD1 PrM GnPm SfPm

rSTmin (s m−1)
SW

SB 45.8 (19.0, 59.5) 5.60 (1.60, 15.2) 2.10 (0.033, 10.4) 33.9 (19.6, 57.0) 54.4 (40.9, 59.8)

HB 33.4 (5.40, 57.4) 15.8 (2.30, 45.2) 11.6 (0.41, 45.8) 29.4 (4.48, 55.8) 48.2 (19.1, 59.3)

PM
SB 31.8 (9.46, 57.6) 52.0 (37.6, 59.7) 47.7 (22.3, 59.6) 54.3 (41.5, 59.8) 56.5 (47.7, 59.9)

HB 35.2 (5.95, 57.6) 46.6 (16.4, 59.0) 40.9 (11.8, 58.4) 36.3 (8.55, 57.3) 51.2 (27.8, 59.4)

k1 (W m−2)
SW

SB 104 (2.10, 432) 284 (70.3, 489) 155 (2.30, 471) 286 (104, 488) 427 (266, 498)

HB 256 (32.2, 473) 250 (37.4, 470) 185 (11.3, 453) 257 (36.3, 471) 381 (125, 492)

PM
SB 214 (4.50, 483) 317 (86.1, 492) 197 (3.20, 479) 378 (177, 495) 446 (322, 498)

HB 209 (14.4, 463) 309 (64.1, 483) 225 (22.9, 464) 254 (39.2, 470) 378 (137, 490)

k2 (◦C)
SW

SB 8.41 (7.02, 10.6) 12.9 (10.0, 17.2) 21.6 (10.4, 29.6) 26.2 (18.8, 29.9) 9.70 (8.11, 11.0)

HB 9.06 (5.55, 21.0) 19.7 (9.23, 28.6) 20.9 (8.76, 29.2) 22.0 (9.96, 29.3) 12.2 (5.82, 26.0)

PM
SB 8.11 (6.66, 9.50) 15.7 (14.5, 17.0) 16.3 (10.95, 27.6) 27.2 (19.8, 29.9) 25.8 (11.6, 29.9)

HB 12.0 (5.77, 26.0) 17.4 (10.2, 25.3) 20.1 (9.23, 28.9) 19.1 (8.34, 28.7) 21.5 (7.94, 29.5)

k3 (kPa−1)
SW

SB 0.063 (0.006, 0.099) 0.045 (0.002, 0.096) 0.049 (0.002, 0.097) 0.052 (0.003, 0.098) 0.069 (0.009, 0.099)

HB 0.053 (0.006, 0.095) 0.048 (0.005, 0.094) 0.049 (0.005, 0.094) 0.050 (0.005, 0.095) 0.058 (0.008, 0.096)

PM
SB 0.050 (0.003, 0.097) 0.077 (0.024, 0.099) 0.050 (0.002, 0.098) 0.063 (0.006, 0.099) 0.069 (0.009, 0.099)

HB 0.052 (0.006, 0.095) 0.068 (0.015, 0.098) 0.051 (0.006, 0.095) 0.051 (0.005, 0.095) 0.056 (0.007, 0.096)

b1 (s m−1)
SW

SB 8.20 (6.39, 11.1) 7.26 (4.13, 12.0) 7.06 (4.12, 12.0) 5.21 (4.04, 7.36) 5.41 (4.92, 6.16)

HB 9.42 (5.74, 13.2) 8.32 (4.45, 13.6) 8.00 (4.36, 13.6) 6.33 (4.16, 11.8) 6.22 (4.35, 10.6)

PM
SB 12.9 (9.27, 14.9) 11.6 (8.13, 14.8) 12.0 (8.22, 14.9) 7.81 (7.07, 8.67) 6.29 (5.54, 7.05)

HB 12.3 (7.03, 14.8) 10.9 (6.57, 14.5) 10.8 (5.61, 14.5) 9.06 (4.58, 14.2) 7.39 (4.49, 12.3)

b2 (s m−1)
SW

SB 3.65 (1.16, 7.66) 4.93 (0.626, 7.88) 5.18 (0.835, 7.89) 6.13 (2.86, 7.93) 0.774 (0.027, 2.33)

HB 5.87 (2.23, 7.79) 4.54 (0.685, 7.67) 4.76 (0.789, 7.69) 5.19 (0.616, 7.78) 3.65 (0.40, 7.40)

PM
SB 2.02 (0.072, 5.87) 3.59 (0.192, 6.96) 1.99 (0.069, 5.57) 0.419 (0.010, 1.55) 0.573 (0.013, 2.28)

HB 2.43 (0.183, 6.55) 3.62 (0.359, 7.19) 3.30 (0.329, 7.19) 3.474 (0.315, 7.38) 2.98 (0.230, 7.17)

σ (mm day−1)
SW

SB 0.406 (0.348, 0.477) 0.702 (0.603, 0.821) 0.840 (0.723, 0.981) 0.509 (0.438, 0.595) 0.318 (0.273, 0.373)

HB 0.310 (0.265, 0.364) 0.705 (0.604, 0.825) 0.806 (0.692, 0.943) 0.479 (0.412, 0.561) 0.285 (0.244, 0.336)

PM
SB 1.20 (1.03, 1.40) 0.676 (0.581, 0.792) 0.948 (0.815, 1.11) 0.897 (0.768, 1.05) 1.05 (0.892, 1.23)

HB 1.06 (0.911, 1.24) 0.646 (0.553, 0.760) 0.768 (0.660, 0.899) 0.701 (0.602, 0.820) 0.944 (0.808, 1.11)
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